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Abstract

This paper analyzes the delay-independent stability of a predator–prey model, with the assistance of the
delay-independent stability criteria for a class of retarded dynamical systems. An interesting result is
obtained that, the delay-independent stability condition is equivalent to the zero-delay stability condition in
this model. The physical meaning of this result is also given.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Stability of retarded dynamical systems, a challenging problem, has caught the researchers’
attention since several decades ago [1,2]. This problem widely appears in bioecology,
biomechanics, robotics and machine tool vibrations [3]. Although the stability analysis of
systems with three or more delays remains hard, things become better for that of systems with two
delays, especially for the delay-independent stability (i.e., the asymptotical stability for all delays)
analysis. For example, literature [4] presents a systematic approach to the delay-independent
stability analysis of a class of dynamical systems with two delays. And research [5] has developed
delay-independent stability criteria for a class of retarded dynamical systems, which extends the
criteria and applications in Ref. [4].
As shown in Refs. [4,5], the delay-independent stability region of a delayed system is generally

smaller than the zero-delay stability (i.e., stability when the delays are zeros) region, which is also
seen from the stability charts of a predator–prey model (refer to Fig. 4.1 for system (4.16) in
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Ref. [3]) and a machine tool vibration system (refer Fig. 3 for system (2.8) in Ref. [6]).2 So an
interesting problem is: is there a system whose delay-independent stability region is equal to the
zero-delay stability one? One possible system with this quality, to be checked in this paper, is the
two-delay linearized predator–prey model [3,7]

’x1ðtÞ ¼ �a11x1ðtÞ � a12x2ðtÞ þ b11x1ðt � t1Þ;

’x2ðtÞ ¼ �a21x1ðtÞ � a22x2ðtÞ þ b22x2ðt � t2Þ; ð1Þ

where ’x1ðtÞ and ’x2ðtÞ stand for dx1=dt and dx2=dt; respectively; x1ðtÞ and x2ðtÞ are the population
(relative to the equilibrium of the corresponding non-linear model of Eq. (1) [3,7]) of the predator
and prey, respectively. All the constant parameters are positive except the time delays t1 and t2 are
non-negative. The parameters a12 and a21 can be assumed to be the competition strengths; a11 and
a22 the intrinsic death rates; b11 and b22 the intrinsic birth rates.
This paper is arranged as follows. Section 2 develops the theoretical background for the

stability, and the stability of system (1) is analyzed in Section 3, which is followed by Section 4
giving conclusive remarks.

2. Theoretical background for the stability

In this and next section, the time delays t1 and t2 may be independent (they are two
independent variables; the cases t1 ¼ tX0; t2 ¼ 0 and t1 ¼ 0; t2 ¼ tX0 may also be included in
this case [5, Section 3]) or dependent (t1 ¼ h1t; t2 ¼ h2t; where h1; h2 are two given positive
integers and tX0 is the time delay), unless specified. The main result is Theorem 2.1, which is a
sufficient stability criterion.

Lemma 2.1 (Wu and Ren [5, Section 2]). Consider the linear retarded system

’xðtÞ ¼ A0xðtÞ þ A1xðt � t1Þ þ A2xðt � t2Þ; ð2Þ

where tA½0;þNÞ9 %Rþ; A0;A1;A2ARn�n; R ¼ ð�N;þNÞ; nX1; t1; t2A %Rþ are two times delays;
xðtÞ; xðt � t1Þ; xðt � t2ÞARn�1; rankðA1Þ ¼ rankðA2Þ ¼ 1: The characteristic equation of system (2)
is

Dðl; t1; t2Þ ¼ P12ðlÞe�lðt1þt2Þ þ P1ðlÞe�lt1 þ P2ðlÞe�lt2 þ P0ðlÞ ¼ 0; ð3Þ

where P0ðlÞ;P1ðlÞ;P2ðlÞ and P12ðlÞ are real coefficient polynomials of the complex number l; the
leading coefficient of P0ðlÞ is assumed to be 1; deg½P0ðlÞ� > deg½P1ðlÞ� > deg½P12ðlÞ�; deg½P12ðlÞ�o
deg½P2ðlÞ�odeg½P0ðlÞ�:

Lemma 2.2 (Wu and Ren [5, Lemmas 3.1 and 3.2]). Linear retarded dynamical system (2) with

characteristic function (3) is asymptotically stable if and only if: (i) the function Dðl; 0; 0Þ ¼
P12ðlÞ þ P1ðlÞ þ P2ðlÞ þ P0ðlÞ is Hurwitz stable, and (ii) the equation Dðl; t1; t2Þ ¼ 0 has no non-

zero root l on the imaginary axis for any given delays t1 and t2:
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Denote

P12ðioÞ ¼ P12RðoÞ þ iP12I ðoÞ; P1ðioÞ ¼ P1RðoÞ þ iP1I ðoÞ; oAR;

P2ðioÞ ¼ P2RðoÞ þ iP2I ðoÞ; P0ðioÞ ¼ P0RðoÞ þ iP0I ðoÞ; i ¼
ffiffiffiffiffiffiffi
�1

p
;

aðoÞ ¼ P12RðoÞ þ P0RðoÞ; bðoÞ ¼ P12I ðoÞ � P0I ðoÞ;

cðoÞ ¼ P12I ðoÞ þ P0I ðoÞ; dðoÞ ¼ P0RðoÞ � P12RðoÞ;

eðoÞ ¼ P1RðoÞ þ P2RðoÞ; f ðoÞ ¼ P1I ðoÞ � P2I ðoÞ;

gðoÞ ¼ P1I ðoÞ þ P2I ðoÞ; hðoÞ ¼ �P1RðoÞ þ P2RðoÞ:

Lemma 2.3. Characteristic equation (3) has no non-zero root l on the imaginary axis for any given

delays t1 and t2 if the equation %ALðoÞ ¼ 0 has no non-zero real root o; where

%ALðoÞ ¼ � ½hðoÞaðoÞ � f ðoÞcðoÞ�2 � ½eðoÞcðoÞ � gðoÞaðoÞ�2

� ½hðoÞbðoÞ � f ðoÞdðoÞ�2 � ½eðoÞdðoÞ � gðoÞbðoÞ�2

þ ½bðoÞcðoÞ � aðoÞdðoÞ�2 þ ½eðoÞhðoÞ � f ðoÞgðoÞ�2: ð4Þ

Proof. Characteristic equation (3) has no non-zero root l on the imaginary axis for any given
delays t1 and t2 if and only if the equation

Pðo; t2Þ qðo; t2Þ

rðo; t2Þ sðo; t2Þ

" #
cos ot1

2

sin ot1
2

" #
¼ 0 ð5Þ

has no non-zero real root o for any given delays t1 and t2; where

pðo; t2Þ ¼ ½aðoÞ þ eðoÞ� cos
ot2
2

þ ½bðoÞ � f ðoÞ� sin
ot2
2

;

qðo; t2Þ ¼ ½bðoÞ þ f ðoÞ� cos
ot2
2

þ ½eðoÞ � aðoÞ� sin
ot2
2

;

tðo; t2Þ ¼ ½cðoÞ þ gðoÞ� cos
ot2
2

þ ½dðoÞ � hðoÞ� sin
ot2
2

;

sðo; t2Þ ¼ ½dðoÞ þ hðoÞ� cos
ot2
2

þ ½gðoÞ � cðoÞ� sin
ot2
2

:

The determinant of the left part of Eq. (5) is

detðo; t2Þ ¼
m2ðoÞ þ m0ðoÞ

2
þ
�m2ðoÞ þ m1ðoÞ

2
cosot2 þ

m1ðoÞ
2
sinot2;

where

m2ðoÞ ¼ ½bðoÞ � f ðoÞ�½gðoÞ � cðoÞ� � ½dðoÞ � hðoÞ�½eðoÞ � aðoÞ�;

m1ðoÞ ¼ 2½�f ðoÞdðoÞ þ bðoÞhðoÞ � eðoÞcðoÞ þ aðoÞgðoÞ�;

m0ðoÞ ¼ ½aðoÞ þ eðoÞ�½dðoÞ þ hðoÞ� � ½bðoÞ þ f ðoÞ�½cðoÞ þ gðoÞ�:

If 8oAR\f0g9R�; %ALðoÞa0; or equivalently m21ðoÞ � 4m2ðoÞm0ðoÞo0; then 8oAR�;
detðo; t2Þa0: This means Eq. (5) has no non-zero root o for any given delays t1 and t2; thus,
this lemma is proved. &
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Theorem 2.1. Linear retarded dynamical system (2) with characteristic equation (3) is delay-

independently stable if: (i) the function Dðl; 0; 0Þ ¼ P12ðlÞ þ P1ðlÞ þ P2ðlÞ þ P0ðlÞ is Hurwitz stable,
and (ii) the equation %ALðoÞ ¼ 0 has no non-zero real root o:

Proof. This theorem, can be proved by applying Lemmas 2.2 and 2.3. &

3. Delay-independent stability analysis

Denote b11 ¼ u; b22 ¼ v; a11 ¼ u þ x; a22 ¼ v þ y; a12a21 ¼ t; then the characteristic equation
of system (1) is

Dðl; t1; t2Þ ¼ uve�lðt1þt2Þ � uðlþ v þ yÞe�lt1 � vðlþ u þ xÞe�lt2

þ l2 þ ðu þ v þ x þ yÞlþ ðu þ xÞðv þ yÞ � t:

According to Theorem 2.1, system (1) is delay-independently stable if: (i) The function Dðl; 0; 0Þ ¼
l2 þ ðx þ yÞlþ xy � t is Hurwitz stable, i.e., x > 0; y > 0; xy � t > 0; and (ii) the equation %ALðoÞ ¼
0 has no non-zero real root o; where

%ALðoÞ ¼ o8 þ c6o6 þ c4o4 þ c2o2 þ c0;

in which

c6 ¼ 2y2 þ 4ux þ 4vy þ 4t þ 2x2;

c4 ¼ 4x2y2 þ ð4v2y2 � 4txv þ x4Þ þ ð4u2x2 � 4tyu þ y4Þ þ 6t2 þ 4ux3

þ 4uvð4xy � tÞ þ 8xyðuy þ vxÞ þ 8tðux þ vyÞ þ 4ðx2 þ y2 � xyÞt þ 4vy3;

c2 ¼ c23t
3 þ c22t

2 þ c21t þ c20;

c0 ¼ ðxy � tÞ½xðy þ 2vÞ � t�½yðx þ 2uÞ � t�½ðx þ 2uÞðy þ 2vÞ � t�;

with

c23 ¼ 4;

c22 ¼ 2x2 þ 2y2 þ 4ux þ 4vy � 8ðu þ xÞðv þ yÞ;

c21 ¼ �4ðx þ uÞðy þ vÞðx2 þ 2ux þ y2 þ 2vyÞ þ 4xyðx þ 2uÞðy þ 2vÞ;

c20 ¼ 2xyðx þ 2uÞðy þ 2vÞðx2 þ 2ux þ y2 þ 2vyÞ:

Now it is to be proved that condition (i) contains (ii). Suppose condition (i) is true. It is easy to
see c6 > 0; c4 > 0 and c0 > 0: And there exists c2 > 0 because (let t ¼ kxy; 0oko1)

c2jt¼0 ¼ c20 > 0;

c2jt¼xy ¼ ðx þ yÞ2 þ 2ux þ 2vy > 0;
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dðc2Þ
dt

o� 2ð1� kÞxy½x2 � 2ð1� 3kÞxy þ y2� � ð12� 8kÞxyðux þ vyÞ

� 2xy½4u2 � 4ð1� 2kÞuy þ ð1� kÞy2� � 8xy½u2 þ ðk � 1Þuv þ v2�

� 2xy½4v2 � 4ð1� 2kÞvx þ ð1� kÞx2�

o 0:

So 8oAR�; %ALðoÞ > 0: This means that condition (i) contains (ii).
To summarize, system (1) is delay-independently stable if the zero-delay stability condition is

held true.

4. Conclusive remarks

In Ref. [7], Freedman and Rao proved that system (1) is asymptotically stable if

ða11 � b11Þða22 � b22Þ > a12a21;

a11 � b11 þ a22 � b22 > ðt1 þ t2Þðb11a22 þ a11b22 þ b11b22Þ: ð6Þ

In Ref. [3, pp. 95–98], St!ep!an obtained a less restrictive result that system (1) is asymptotically
stable if

ða11 � b11Þða22 � b22Þ > a12a21;

a11 þ a22 � b11 � b22 > b11ðb22 þ 0:22a22Þt1 þ b22ðb11 þ 0:22a11Þt2: ð7Þ

In Section 3, this paper has shown that system (1) is asymptotically stable if

ða11 � b11Þða22 � b22Þ > a12a21;

a11 � b11 þ a22 � b22 > 0: ð8Þ

Condition (8) has largely improved on Eqs. (6) and (7), and it is the best sufficient condition for
the delay stability of system (1) because it coincides with the zero-delay stability of this system. A
more delicate analysis based on the theory in Ref. [5] has shown that system (1) is delay-
independently stable if and only if condition (8) is held true when any one of the three conditions
is satisfied: (1) t1 and t2 are independent, (2) t1 ¼ t; t2 ¼ 0; or t1 ¼ 0; t2 ¼ t; (3) t1 ¼ t2 ¼ t: The
elaboration of this analysis is so long that it is deferred to be shown in Appendix A.
It should be mentioned that the above discussion remains right for the extreme cases a12a21 ¼ 0

or b11b22 ¼ 0:
To understand the above discussion, consider cats and mice in one area as the predator and

prey, respectively. Take the two reasonable assumptions: (1) the death rate of cats and mice are,
respectively, greater than their birth rate; (2) the competitive strengths of mice to cats is zero while
that of cats to mice is positive. For example, let

a11 ¼ 0:05; a12 ¼ 0; b11 ¼ 0:01; a21 ¼ 1; a22 ¼ 0:3; b22 ¼ 0:2:
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Conditions (6), (7) and (8) are reduced to Eqs. (9), (10) and (11), respectively:

t1 þ t2o28=3; t1X0; t2X0: ð9Þ

133t1 þ 210t2o7000; t1X0; t2X0: ð10Þ

t1X0; t2X0: ð11Þ

These three conditions are plotted in Fig. 1.
In Fig. 1, the inner of triangle AOB together with lines OA and OB except points A and B is

corresponding to Eq. (9); the inner of triangle COD together with lines OC and OD except points
C and D is corresponding to Eq. (10); the first quadrant of the t1t2 plane together with axes t1 and
t7 is corresponding to Eq. (11). It is observed from Fig. 1 that, condition (11) is best of all, and
then conditions (10) and (9).
Now we want to give the physical meaning of what we get in Section 3. Define ða11 � b11Þ and

ða22 � b22Þ as the net death rates of the predators and the preys, respectively; then the number of
each of the two creatures tends to be stable in spite of the delays in the births, if their net death
rates are positive, and if the product of these two net death rates are bigger than that of their
competitive strengths.

Appendix A. A more delicate stability analysis

Denote b11 ¼ u > 0; b22 ¼ v > 0; a11 ¼ u þ x > 0; a22 ¼ v þ y > 0; a12a21 ¼ t > 0:

A.1. The case for t1 and t2 independent

By Theorem 3.1 in Ref. [5], the sufficient condition for model (1) to be delay-independently
stable in Section 3 is also the necessary condition.

A.2. The case for t1 ¼ t; t2 ¼ 0 or t1 ¼ 0; t2 ¼ t

Only consider the sub-case t1 ¼ t; t2 ¼ 0 (the sub-case t1 ¼ 0; t2 ¼ 0 is similar). The
characteristic equation is

Dðl; tÞ ¼ �uðlþ yÞe�lt þ l2 þ ðu þ x þ yÞlþ ðu þ xÞy � t:
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By Corollary 3.2 in Ref. [5], system (1) is delay-independently stable if and only if: (i) Dðl; 0Þ ¼
l2 þ ðx þ yÞlþ xy � t ¼ 0 is Hurwitz stable, and (ii) the equation %SLðoÞ ¼ �SLðoÞ ¼ o4 þ ðx2 þ
y2 þ 2ux þ 2tÞo2 þ ð2uy þ xy � tÞðxy � tÞ has no non-zero real root o: Conditions (i) and (ii) are
simplified as x > 0; y > 0; xy � t > 0; i.e., the zero-delay stability condition.

A.3. The case for t1 ¼ t2 ¼ t

The characteristic equation is

Dðl; tÞ ¼ uve�2lt � ½ðu þ vÞlþ 2uv þ uy þ vx�e�lt þ l2 þ ðu þ v þ x þ yÞlþ ðu þ xÞðv þ yÞ � t:

By Corollary 3.3 in Ref. [5], system (1) is delay-independently stable if and only if: (i) the function
Dðl; 0Þ ¼ l2 þ ðx þ yÞlþ xy � t is Hurwitz stable, i.e., x > 0; y > 0; xy � t > 0; and (ii) 8oAR�;
(1) %ELðoÞ ¼ �ELðoÞa0; (2) ELðoÞ ¼ 0 but either FLðoÞo0 or GLðoÞo0; where

FLðoÞ ¼ o4 þ ½ðu � vÞ2 þ x2 þ 2ux þ y2 þ 2vy þ 2t�o2 þ ½ðx þ 2uÞðy þ 2vÞ � t�ðxy � tÞ;

GLðoÞ ¼ ðuy þ vx þ xy � t � o2Þ2 þ o2ð2u þ 2v þ x þ yÞðx þ yÞ;

%ELðoÞ ¼ o8 þ c6o6 þ c4o4 þ c2o2 þ c0ðxy � tÞ;

in which

c6 ¼ ðu � vÞ2 þ 4ðt þ ux þ vyÞ þ 2ðx2 þ y2Þ;

c4 ¼ð6t2 � 4txy þ 3x2y2Þ þ ð12xy � 4tÞuv þ 2ðu � vÞ2t

þ ½x2y2 � 2tðvx þ uyÞ þ ðvx þ uyÞ2� þ 4ðx2 � xy þ y2Þt

þ ½ðx4 � 2tvx2y þ v2y2Þ þ ðy4 � 2tuxy2 þ u2x2Þ�

þ 2ðvy þ uxÞðu � vÞ2 þ 8ðux þ vyÞt þ 2u2x2 þ 2v2y2

þ u4 þ v4 þ u3x þ v3y þ 8ðuy2x þ vx2yÞ þ 4ðx3u þ y3vÞ;

c2 ¼ c23t
3 þ c22t

2 þ c21t þ c20;

c0 ¼ � t3 þ ð4uv þ 4vx þ 3xy þ 4uyÞt2

þ ð�8uv2x � 8vx2y � 8u2vy � 8uy2x � 18uvxyÞt

þ ð�5u2y2 � 5v2x2 � 3x2y2Þt þ 2u3y3 þ 2x3v3 þ x3y3

þ 4x2uy3 þ 5x3v2y þ 4x3vy2 þ 4y2u3v þ 5xu2y3 þ 4x2uv3

þ 14uv2yx2 þ 8u2v2xy þ 14u2vxy2 þ 14uy2vx2;

with

c23 ¼ 4;

c22 ¼ 2x2 þ u2 � 10uv � 8vx þ 2y2 � 8uy þ v2 þ 4ux þ 4vy � 8xy;
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c21 ¼ � 12uy2v � 4vx3 þ 4uv2x � 10uv2y þ 2u2y2

� 12uyx2 � 12vxy2 þ 4u2vy � 10u2vx � 4uy3

þ 2v2x2 � 10v2xy þ 8vx2y � 10u2yx � 2u3y þ 16uvxy

þ 8uy2x � 2v3x � 4x3y � 4y3x � 12vx2u þ 4x2y2;

c20 ¼ 4v3x2y þ 8uy2x3 þ 4uy4x þ 4vx4y þ 2uv2x3

þ 10u2y2x2 þ 2u2vy3 þ 8vx2y3 � 8u2v2xy þ 4u3y2x

þ 14vx3yu þ 14uy3xv þ 14uv2xy2 þ 14u2vx2y þ 4uv3xy

þ 4u3vyx � 2uy2vx2 � 4uv2yx2 � 4u2vxy2

þ u2y4 þ 10v2x2y2 þ 2y4x2 þ 2x4y2 þ v2x4:

When the zero-delay stability, i.e., condition (i), is satisfied, there exists FLðoÞ > 0 and GLðoÞ > 0;
8oAR�: So condition (ii) is reduced to 8oAR�; %ELðoÞ > 0 (note that %ELðoÞ is a real polynomial of
o). It can be seen that c6 > 0 c4 > 0: And there exists c2 > 0 (let t ¼ kxy; 0oko1) because

c2jt¼0 > 4uvxyðu � vÞ2X0;

c2jt¼xy > ½4uvyðu � vÞ2 þ uy2ðu � 2vÞ2� > 0;

dðc2Þ
dt

o� ½ð4� 4kÞy2 þ ð�12k2 þ 16k � 4Þxy þ ð4� 4kÞx2�xy

� ½ð8� 2kÞu2 þ ð�16þ 20kÞuv þ ð8� 2kÞu2�xy

� ð12� 8kÞux2y � ð12� 8kÞvy2x

o 0:

Also there exists c0 > 0 because

c0jt¼0 ¼ 2u
3y3 þ 2x3v3 þ x3y3 þ 4x2uy3 þ 5x3v2y

þ 4x3vy2 þ 4y2u3v þ 5xu2y3 þ 4x2uv3

þ 14uv2yx2 þ 8u2v2xy þ 14u2vxy2 þ 14uy2vx2 > 0;

c0jt¼xy ¼ 6uv2yx2 þ 6u2vxy2 þ 2u3y3 þ 2x3v3 þ 4y2u3v þ 4x2uv3 þ 8u2v2xy > 0;

dðc0Þ
dt

����
t¼0

¼ � 8uv2x � 8vx2y � 8u2vy � 8uxy2 � 18uvxy � 5u2y2 � 5v2x2 � 3x2y2o0;

dðc0Þ
dt

����
t¼xy

¼ �10uvxy � 8uv2x � 8u2vy � 5u2y2 � 5v2x2o0;

d2ðc0Þ
dt2

¼ 6ðxy � tÞ þ 8ðuy þ vx þ uvÞ > 0:

So 8oAR�; %ELðoÞ > 0 when the zero-delay stability is held.
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To summarize, when t1 ¼ t2 ¼ t; model (1) is asymptotically stable if and only if the
zero-stability condition is held true.
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